注册 登录
查看: 213|回复: 0

[考研数学] 2019考研数学一高等数学和线性代数的复习

[复制链接]

1156

主题

1156

帖子

4192

积分

论坛元老

Rank: 8Rank: 8

积分
4192
发表于 2018-8-1 13:43:26 | 显示全部楼层 |阅读模式
高等数学在数一中的考点分布相对数二、数三而言比较广,并且出题的角度和方向也比较琐屑,但是也并非无迹可寻。只要我们认真的剖析和剖析考研真题,还是可以发现一些对我们非常有价值的信息。数学在考研中的考试题型不外乎是定义题、计算题、证明题。下面具体为大家剖析高等数学中极限这个大的内容,有哪些考点。
极限在数一中还是占着很大的比重,考试的只要考查方式就是求极限,还有就是一些单调有界定理的使用。我们要充分掌握求不定式极限的种种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;其次就是极限的应用,主要表现为连续,导数等等,对函数的连续性和可导性的探讨也是考试的重点,这要求我们直接从定义切入,充分理解函数连续的定义和掌握判定连续性的方法。
而线性代数的复习,首先要做到基础过关。
  线代概念很多,重要的有代数余子式、伴随矩阵、逆矩阵、初等变换与初等矩阵、正交变换与正交矩阵、秩(矩阵、向量组、二次型)、等价(矩阵、向量组)、线性组合与线性表出、线性相关与线性无关、极大线性无关组、基础解系与通解、解的结构与解空间、特征值与特征向量、相似与相似对角化、二次型的标准形与规范形、正定、合同变换与合同矩阵。
而运算法则也有很多必须掌握:行列式(数字型、字母型)的计算、求逆矩阵、求矩阵的秩、求方阵的幂、求向量组的秩与极大线性无关组、线性相关的判定或求参数、求基础解系、求非齐次线性方程组的通解、求特征值与特征向量(定义法,特征多项式基础解系法)、判断与求相似对角矩阵、用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
其次,加强抽象及推理能力。
线性代数是跳跃性的推理过程,在做题时表现的会很明显。同学们在做高等数学的题时,从第一步到第二步到第三步在数学式子上一个一个等下去很清晰,但是同学们在做线性代数的题目时从第一步到第二步到第三步经常在数学式子上看不出来,比如行列式的计算,从第几行(或列)加到哪行(列)很多时候很难一下子看出来。这都需要同学们不但基础知识掌握牢靠,还要锻炼自己的抽象及推理能力。
建议同学们再做做汤老师的2019《考研数学历年真题全解析》(数学一),书中对于高等数学、线性代数这些常考题型的介绍,有助于我们掌握答题技巧和解题方法。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回列表 返回顶部